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SUMMARY

A fractional step method is developed for solving the time dependent two-dimensional Euler equations
with full non-linear free-surface boundary conditions. The geometry of the free surface is described by a
height function, and its evolution is tracked by integrating in time the kinematic boundary conditions
based on the free-surface volume flux. The fluid domain is discretised by adapting a time-varying
curvilinear grid to all boundaries, including the free surface. Mass and momentum equations are
discretised by a conservative finite volume formulation, taking into account the time dependency of the
grid. A fractional step type method is developed for integrating the fluid motion in time. The method is
applied to a non-linear standing wave in a square container, testing for compliance with mass and energy
conservation and comparing computed wave period with other results. Non-linear travelling waves are
simulated in channels with either constant depth or varying depth and non-linear wave processes
involving both triad interactions and quartet interactions are studied. Results are compared with both
experimental data and theoretical results and excellent agreement is found. Interaction of waves and
currents is studied. The blocking of waves in an opposing current is simulated and found to show good
agreement with theoretical results. The method is intended to be a first step towards a full description of
wave dynamics interacting with structures and currents. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical studies of free-surface flows involving gravity waves have typically been divided
into two distinct approaches. Either the hypothesis of irrotational flow is chosen, leading to a
potential flow formulation, which is often solved with boundary integral equation methods
(BIEM) or spectral methods; or the Navier–Stokes or Euler equations are solved without
further simplification. For references see the review by Floryan and Rasmussen [1] and Tsai
and Yue [2].

In the potential flow approach, unsteady flow can be described accurately, e.g. unsteady
gravity waves of finite amplitudes can be simulated with all non-linear effects and without any
significant damping [3–6]. However, the interaction of waves with currents, and in particular
with rotational velocity fields, is difficult to describe with these methods due to the inherent
assumptions. Neither the effects of viscosity or turbulence on the wave motion can be
described.
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In principle, no such restrictions are imposed when solving the Navier–Stokes equations.
However, not many computations of unsteady gravity waves have been reported in the
literature [7–11]. Furthermore, it seems, that solutions to the unsteady Navier–Stokes or Euler
equations, including a fully non-linear free-surface description, have usually suffered from
relatively large numerical errors which did not allow accurate long term simulations of
travelling gravity waves. The origin of the errors are believed to be found mainly in some of
the following problems.

First of all, an accurate description of the free-surface geometry and its evolution in time is
very difficult unless the fluid region is discretised exactly within its boundaries by using a
surface-adaptive grid, which is opposite to the marker and cell (MAC) or volume of fluid
(VOF) methods [7,9,12]. Then the transient governing equations must be formulated within a
moving frame of reference. Such an approach has been introduced by e.g. Chan [8] and is often
termed the arbitrary Lagrangian–Eulerian (ALE) method. However, the complexity of the
algorithms is increased, time-accuracy is sacrificed and numerical damping is introduced by
introducing time varying grids [1].

Secondly, in incompressible flow the governing equations are usually modified in order to
ensure well-posed coupling between the velocity field and the pressure field. This is done either
by the introduction of artificial compressibility or by using segregated methods such as the
SIMPLE/PISO family, the MAC scheme or the fractional step approach. While an implemen-
tation of pressure boundary conditions in these methods is relatively easy for rigid boundaries,
this is not the case along a free surface, because an accurate specification of the absolute value
of the pressure is required in order to properly describe the transfer between potential and
kinetic energy in the wave motion.

This study focuses on the applicability of Navier–Stokes and Euler codes for simulating
travelling gravity waves in a numerical wave-tank, and an attempt is made to overcome some
of the difficulties mentioned above. Hence, the aim of this study is to compute unsteady
free-surface flow with an accuracy which is comparable with that achieved by conventional
fully non-linear potential flow methods.

A finite volume code employing a cell-centred variable layout on general curvilinear grids is
extended to moving grids and the flow is integrated in time by a modified fractional step
method. The free surface is described by a height function and its evolution tracked by
integrating in time a flux-based form of the kinematic free-surface boundary condition. The
method is applied to simple two-dimensional geometries, mostly being wave tanks of different
shapes. Usually, neither viscosity nor turbulence have a significant influence on the wave
motion in wave tanks, therefore, the study is restricted to the Euler case. By doing so, the
intricate problems of the intersection between the free surface with side walls can be simplified
due to the imposed slip conditions along wall boundaries. Further, without the need of grid
refinement in the boundary layer region, computational resources can be saved. Finally, the
criterion of energy conservation can be applied rigorously in the inviscid case to evaluate
numerical damping characteristics. However, the extension of the method to viscous flow is, in
principle, straightforward and has been successfully tested.

The method is tested for various wave problems. Standing waves in closed containers are
simulated, examining for compliance with mass and energy conservation laws and testing for
dependency on both space and time discretisation. Non-linear travelling waves are simulated
in a channel with either constant depth or varying depth, and non-linear wave processes
involving both triad wave interactions and quartet wave interactions are studied. Finally,
interaction of waves and currents is simulated, including wave blocking conditions.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)
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2. MATHEMATICAL FORMULATION

The two-dimensional Euler equations may be written as

9 ·u=0, (1)

(u
(t

+u ·9u= −9p, (2)

where u is the fluid velocity vector, and p denotes the dynamic excess pressure, being
normalised with the fluid density. By excluding the mean hydrostatic pressure component from
p, the gravitational source term in Equation (2) is avoided. The gravitational forcing then only
appears in the dynamic free-surface boundary condition.

For description of the free-surface geometry, a co-ordinate system is defined by the
unit-length basis vectors ev and eh in the vertical and horizontal direction, respectively.
Assuming the free surface to be single valued in the direction of ev, a local free-surface position
vector may be expressed as

r=ro+hev, (3)

where the position vector ro defines the equilibrium free-surface shape and h denotes a local
height variable.

The kinematic and dynamic boundary conditions are imposed along the free surface. The
kinematic condition constraints fluid particles at the free surface to follow the local fluid
velocity. In the variables, defined above, this may be expressed as

(h

(t
=u ·ev− (u ·eh)

(h

(s
, (4)

where (/(s denotes the partial derivative in the direction of eh. Since ro satisfies (/(s (ro ·eh)=
0, by definition, any local normal vector to the free surface satisfies

n= (n ·ev)
�

ev−
(h

(s
eh
�

. (5)

Using Equation (5), the kinematic boundary condition, Equation (4), may be transformed to

(h

(t
=

u ·n
n ·ev

. (6)

Equation (6) expresses the temporal change of the free-surface geometry based on a local flux
variable, since u ·n denotes the volume flux through a segment of the free surface, being �n �
wide.

The dynamic boundary condition expresses the equilibrium of stresses across the free
surface. Since shear stresses are neglected, only a condition for the normal stress remains,
yielding a Dirichlet boundary condition for the dynamic excess pressure

p=patm−g · (r−r0), (7)

where g and patm denote the gravitational force vector and the atmospheric pressure in the air
(normalised by fluid density), respectively. In the present work the atmospheric pressure is set
to zero, patm=0.

At the remaining open boundaries, the normal velocity is specified to some value U

u ·n=U. (8)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)
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Slip conditions are imposed along wall boundaries

u ·n=0. (9)

3. NUMERICAL METHOD

The fluid domain is discretised by a curvilinear grid adapted to all fluid boundaries. All field
variables are defined at cell centres, and the spatial discretisation follows the usual finite
volume approach, where the governing equations are written as integral transport equations
expressing the balance of fluxes for each cell. So the temporal change of a scalar field f inside
a cell is written as

d
dt

&
cell

f dV=
&

face

F dS, (10)

where F denote fluxes of f across the cell boundary.
Grid generation. The free surface is discretised by a number of points ri, each corresponding

to a cell face of the surface adapted grid. Cell vertex points along the surface are interpolated
between these points by cubic B-splines.

The remaining boundaries are discretised by employing different stretching functions.
Generally, an exponential stretching is employed in the vertical direction, concentrating
horizontal grid lines near the free surface. The stretching is parameterised by the ratio between
the increments at either end along a vertical grid line, a=Dylower/Dyupper.

Given the boundary vertex points, the interior vertex points of the grid are computed by
transfinite interpolation with appropriate blending functions, as described by Thomson et al.
[13]. Every four vertex points, indexed as ji91/2,j91/2, define a computational cell with index
(i, j) (see Figure 1(a)). All variables are defined at cell centres, and in principle the spatial
discretisation follows the usual finite volume approach for the cell centred variable layout.

3.1. Spatial discretisation

Field values are discretised to be constant within each cell and so fluxes are constant over
faces, hence Equation (10) is discretised for each cell as

Figure 1. (a) Schematic drawing of finite volume cell and variable layout. (b) Geometrical representation of grid flux,
light shaded and dark shaded areas representing positive contributions (out-flowing) and negative contributions

(in-flowing), respectively.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)
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d
dt

(6f)=Df(f), (11)

where 6 denotes the cell volume and is found directly by geometrical considerations, while f(f)
denotes the integrated flux of f over each face. The operator D computes the signed sum of
face values around a cell

D(f)i, j= fi, j,e− fi, j,w+ fi, j,n− fi, j,s, (12)

where face values are indicated by the subscripts w, e, s, n, using the usual notation of ‘west’,
‘east’, ‘south’, ‘north’ cell faces, respectively.

At each face, the flux f is divided into a convective, a diffusive and a grid-velocity part, the
latter being close to the approach of Rosenfeld et al. [14],

f(f)= fconv(f)+ fdiff(f)+ fgrid(f), (13)

where

fconv(f)=Q(f)I(u) · n, (14)

fdiff(f)=kG(f) · n, (15)

fgrid(f)=I(f)fg, (16)

where n denotes the face normal vector, with �n � being the face area, k denotes a diffusivity and
fg is the grid flux, describing the motion of grid faces. I, Q and G denote discretisation
operators. The operator I interpolates face values as the mean value of adjacent cell centre
values to their common face, (e.g. east face of cell (i, j )),

I(f)i, j,e=
1
2

(fi, j+fi+1, j). (17)

The operator Q interpolates face values for the convective fluxes employing the QUICK
upwind scheme (e.g. east face of cell (i, j ) and flow directed from west to east)

Q(f)i, j,e=
1
2

(fi, j+fi+1, j)−
1
8

(fi−1, j−2fi, j+fi+1, j). (18)

The operator G evaluates the gradient of a field at the cell face, including cross derivative
terms,

G(f)i, j,e=
ni, j,e

1/2 (6i, j+6i+1, j)
(fi+1, j−fi, j)+

1/4 (ni, j,s+ni, j,n+ni+1, j,s+ni+1, j,n)
1/2 (6i, j+6i+1, j)

×
1
4

(fi, j+1−fi, j−1+fi+1, j+1−fi+1, j−1),

since n/6 are contravariant basis vectors of the grid.

3.1.1. Boundary conditions. All boundary conditions are imposed implicitly at cell faces. They
are implemented in the general form

af+b
(f

(n
=r, (19)

including both Neumann and Dirichlet conditions, specified by a=0 and b=0, respectively.
Assuming the value fb at the boundary face is implicitly known, the operators I and Q at
boundary cell faces are given by

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)
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Ib(f)=Qb(f)=fb. (20)

The gradient operator G at boundary cell faces is based on second-order one-sided differ-
ences, including cross-derivative terms (e.g. east boundary face)

Gb(f)i, j,e

=
ni, j,e

3/2 6i, j−1/2 6i−1, j

�8
3

fb−
9
3

fi, j+
1
3

fi−1, j
�

+
3/4 (ni, j,s+ni, j,n)−1/4 (ni+1, j,s+ni+1, j,n)

3/2 6i, j−1/2 6i−1, j

�3
4

(fi, j+1−fi, j−1)

−
1
4

(fi−1, j+1−fi−1, j−1)
�

. (21)

The gradient in Equation (19) is approximated by use of Equation (21),

afb+bGb(f) ·
n

�n �=r, (22)

which can be solved for fb and can be included implicitly through the use of Ib, Qb and Gb

in the spatial discretisation.

3.1.2. Extrapolation of 6elocity at free surface. In contrast to the general viscous case, in
the Euler case the dynamic boundary condition is a pure pressure boundary condition
because viscous stresses are not defined. Therefore, no boundary condition for the velocity
field is imposed along the free surface. However, because the velocity is only defined at cell
centres, but is needed at free-surface cell faces for the evaluation of fluxes, extrapolation of
face values is required. In the present work, the velocity is extrapolated by use of the
operator Ib, according to Equations (20) and (22), as if homogeneous Neumann conditions
were imposed,

(u
(n

=0. (23)

This procedure corresponds to first-order extrapolation.

3.2. Time discretisation

3.2.1. O6erall procedure. The overall procedure for integrating the system of fluid motion
and free surface from time step tn to tn+1 may be summarised as follows.

� A spatially discretised kinematic boundary condition is explicitly integrated in time, yielding
the new free-surface geometry at time tn+1.

� A new grid for tn+1 is generated and grid fluxes are computed.
� The fluid velocity is integrated in time by a fractional step method.
� The pressure is obtained by solving the momentum equation on the basis of the new velocity

field.

The entire time integration procedure is implemented for variable time steps. However, the
time step is set to be constant below, for simplicity of documentation.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)
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Figure 2. Description of the free-surface geometry by height function points moving along given direction ev.
Interpolation of grid vertex points by cubic B-splines.

3.2.2. Free surface. In the present formulation, the surface height variable h is discretised at
centre points of free-surface cell faces. The flux-based form of the kinematic equation,
Equation (6), is integrated over every free-surface cell face, yielding

(h

(t
=

f
n ·ev

, (24)

where n is the face normal vector and f=u ·n denotes the volume flux through the free-surface
cell face. Equation (24) is numerically integrated from time step n to n+ 1 by an explicit
third-order Adams–Moulton multistep method, as

hn+1=hn+Dt %
2

i=0

ai

f n− i

nn− i ·ev

, (25)

with

a0=
23
12

, a1= −
16
12

, a2=
5

12
. (26)

The flux variable and boundary conditions are defined at cell faces, but the free-surface
geometry must be specified at cell vertex points when used for grid generation. Therefore,
interpolation is required at some stage in the implementation of the kinematic boundary
conditions (see Figure 2). In the present formulation, grid vertex points for time step n+1 are
interpolated on the basis of the free-surface position vectors rn+1=ro+hn+1e by employing
cubic B-splines, in order to minimise the dissipation associated with interpolation. By basing
the free-surface evolution on the local volume flux, global mass conservation can be ensured
very accurately—the temporal volume change of the fluid domain reflecting accurately the
global net flux through outer boundaries.

3.2.3. Fluid domain. The time integration of the velocity field is carried out by a second-order
fractional step method, being close to that of Zang et al. [15]. However, it is extended to
moving grids by an approach similar to that of Rosenfeld et al. [14]. Assume that solutions for
velocity and pressure are known up to time step tn, and grid and boundary conditions have
been set for tn+1. The velocity field at time tn+1 is split into a predictor velocity field u* and
an irrotational correction 9f,

un+1=u*+9f. (27)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)



S. MAYER ET AL.300

Using an explicit Adams–Bashforth type scheme for the convective term and the pressure
forcing, the momentum equations (2) are satisfied by u* to second-order in time,

u*−un

Dt
=
�3

2
9pn−

1
2

9pn−1�−
�3

2
(u ·9u)n−

1
2

(u ·9u)n−1�. (28)

The correction 9f is determined by restricting un+ l to satisfy the continuity equation (1),
hence

92f= −9 ·u*. (29)

In usual fractional step methods, the pressure forcing is evaluated in the predictor step at time
tn−1/2=pn−1/2Dt and is updated in time by the incrementation procedure,

pn+1/2=pn−1/2−
1
Dt

f. (30)

The incrementation, Equation (30), is not trivial to perform on a moving grid system because
the different fields pn+1/2, pn−1/2 and f are defined on different grids (and grids at time step
t+1/2(Dt) do not exist). Furthermore, the absolute value of the pressure field has to comply
accurately to the dynamic free-surface condition. Although attempts have been made to derive
algorithms of the form of Equation (30) with special consideration of the inhomogeneous
Dirichlet boundary conditions for f at the free surface, we did not succeed in controlling the
transfer between kinetic energy in the flow and potential energy in the free-surface deformation
to sufficient accuracy.

Instead of using the pressure updating procedure of the type in Equation (30), the pressure
is evaluated at time tn+1 by taking the divergence of the momentum equation (2),

92p= −9 · (u ·9u), (31)

yielding a Poisson equation for the pressure field. As the boundary condition along the free
surface, Equation (7) is imposed at every free-surface cell face,

pn+1= −g · (rn+1−r0). (32)

By projecting the momentum equation (2) onto the normal direction of the boundary, a
Neumann boundary condition for the pressure is derived at the remaining boundaries,

9p ·n= − (u ·9u) · n. (33)

The grid is moving as it adapts to the moving free surface, therefore, the discrete differential
operators are time dependent with the grid. Furthermore, since all variables are stored as cell
values, face values for evaluation of fluxes must be interpolated. This adds complexity to the
resulting algorithm, compared with the general outline above. Using the above operator
notation, the velocity time integration procedure may be expressed as follows.

u*6n+1=un6n+DtD
�

−
�3

2
(pn)n−

1
2

(pn)n−1�
−
�3

2
(Q(u)f)n−

1
2

(Q(u)f)n−1+I
�1

2
(un+u*)

��
fg

n+1/2n, (34)

f*=I(u*) ·nn+1, (35)

D(G(f) ·n)n+1= −D(f*), (36)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)
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un+1=u*+
1
6n+1 D(I(f)nn+1), (37)

f n+1= f*+ (G(f) · n)n+1. (38)

While f * denotes the predictor flux field, and is not numerically divergence-free, f n+ l is
ensured to be divergence-free in the definition D( f n+1)=0, by means of step Equations
(36) and (38). The grid flux terms are discretised in time with a trapezoidal scheme, since
this semi-implicit treatment has been shown to be advantageous for both accuracy and
stability. In terms of the present finite volume approach, fg

n+1/2 is based on the area over
which a given cell face is sweeping from time tn to tn+1 (see Figure 1(b)). The geometrical
evaluation of cell volumes 6 and grid fluxes fg, respectively, ensures that

6n+1−6n= −DtD(fg
n+1/2) (39)

is exactly satisfied, which retains the conservative properties of the algorithm. Physically,
Equation (39) implies that fluid moving with constant speed is not experiencing any erro-
neous acceleration due to the grid motion.

At the end of a time step the Poisson equation for the pressure, Equation (31), is
discretised in space and solved,

D(G(p) ·n)n+1= −D
�

I
�D(Q(u)f)

6

�
·n
�n+1

. (40)

3.2.4. Solution of algebraic equations. The implicit part of both the discretised momentum
equation (34) and the Poisson equations (36) and (40) is written with nine-point stencils in
a cell-by-cell form. While the discretised momentum equation (34) is solved iteratively by
either point- or line-relaxation, the Poisson equations (36) and (40) are solved by a multi-
grid method, using standard coarsening and V-cycle relaxation. On every multigrid level
either point-relaxation, line-relaxation, or an ILLU smoother is employed, depending on the
grid.

3.2.5. Wa6e generation. For the generation of waves with angular frequency v and phase
f, a time varying velocity profile is imposed at one end of the fluid domain, being of the
form

ux= fr [U1(y) sin(8)+U2(y) sin(28)], 8=vt+u, (41)

allowing the control of both the primary wave and its second harmonic. The imposed
velocity profiles U1(y), U2(y) may be either linear or rectangular as it might be physically
imposed by flap- or piston-wave makers, see e.g. Reference [16], or Stokes velocity profiles
may be imposed. Generally, the amplitude of the boundary velocity is superposed by a
smoothly increasing ‘ramp-function’ fr(t) in order to prevent initial waves with amplitudes
which are too high

fr(t)=Í
Ã

Ã

Á

Ä

t
T

−
1
p

sin
�

p
t
T
�

1

for 0B tBT

for t\T

, (42)

where T denotes the wave period.
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3.2.6. Wa6e absorption. At the opposite end to the wave generator a numerical sponge layer
is introduced within a region sizing two or more wave lengths (e.g. from xstart to xend,
�xend−xstart�\2L). Both the elevation variable h and the fluid velocity u at every time step are
relaxed towards prescribed values, hp and up, respectively, by a procedure of the form

h= (1−g)h+ghp, u= (1−g)u+gup, (43)

where g denotes a relaxation parameter which increases very softly as the waves are entering
at xstart in order to prevent reflections. Throughout this work the variation of g has the form

g(x)=bb3+ (1−b)b6, b=
�x−xstart�

�xend−xstart�
. (44)

The parameter b determines the growth rate of the relaxation and is adjusted for the particular
set-up.

4. RESULTS

4.1. Standing wa6es

Standing Stokes waves have been extensively studied in the past and they are often known
in a Fourier form. A description of a standing wave with steepness ka=0.1403 was used, that
includes the first eight harmonic components (e.g. to eighth-order in wave steepness ka), found
by Agnon and Glozman [17]. Agnon and Glozman used an accurate Hamiltonian formulation
and showed that the wave is exactly periodic over thousands of periods. Due to amplitude
dispersion, the period was found to be Te=1.00253×Tl, Tl=2p/
kg being the period of the
corresponding linear deep-water Stokes wave, with k being the wave number.

At t=0, in a square container with side length L (being the wavelength), the free-surface
elevation is prescribed, including the first eight harmonic components according to Agnon and
Glozman [17], and fluid velocity is initially set to zero. Grids are generated with N×M cells,

Figure 3. Standing wave of steepness ka=0.1403. Fluid domain discretised by 32×16 cells, with equidistant
horizontal resolution and stretched vertical discretisation (a=10). Velocity vectors are shown at cell centres.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)
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Figure 4. Standing wave of steepness ka=0.1403 discretised in space by 64×32 cells and in time with time step
Dt/Tl=0.009. (a) Energy history; (b) relative volume defect (Vtot(t)−Vtot(0))/(LH) and relative energy defect

(Etot(t)−Etot(0))/E0 as a function of time.

N=2M being equidistant horizontally and employing vertical stretching (a=10) (see Figure
3).

While the fluid and surface motion is computed in time, the total fluid volume Vtot, the
kinetic energy Ekin, the potential energy Epot and the total energy Etot=Ekin+Epot are
evaluated (see Figure 4). The relative global volume defect (Vtot(t)−Vtot(0))/(HL) is seen to

Figure 5. Standing wave of steepness ka=0.1403. (a,b) Computed normalised wave period T/Te as function of space
and time discretisation, respectively, Te=1.00253(2p/
kg) is the solution of Agnon and Glozman [1]. (c,d) Long term
energy loss (dEtot/dt)/E �0 as a function of space and time discretisation, respectively. Ratio of grid points in vertical
direction compared with horizontal direction is 1:2, the vertical discretisation using a stretching function is shown in

Figure 3.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 293–315 (1998)
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Figure 6. Propagation of waves generated by first-order piston wave maker. Depth h=0.4 m, wave period T=2.5 s
and wave height H=0.084 m. (a) Computed elevation profile at five phases during one period using discretisation
Dx=0.03 m, Dt=0.01 s; (b) amplitudes of first four harmonic components. (—), computed, Dx=0.03 m, Dt=0.01

s; (-----), computed, Dx=0.06 m, Dt=0.02 s; (�), measured by Chapalain et al. [18].

oscillate with the wave period, the oscillations being due to the interpolation of grid vertex
points from face centre points along the free surface. However, the variations appear to be
reversible and the long term global volume defect is found to be negligible in all cases. The
time history of the energy defect (Etot(t)−Etot(0))/Etot(0) is also superposed by variations
within a wave period, however, it is clearly decreasing in average. While the oscillations are
ascribed to errors in the integration of the energy over the fluid domain and are of minor
importance, the results clearly show an average dissipative behaviour.

Both wave period and the energy loss are computed for different space and time discretisa-
tions (see Figure 5). While the computed wave period and the energy loss seem to converge
with second-order in space discretisation given a constant time discretisation, the dependency
on time discretisation is more complex. Given the space discretisation, the dissipation rate
reaches a minimum at a given finite time step, and further refinement of the temporal
discretisation causes the dissipation rate to increase. The convergence of the computed period,
while second-order for moderate time steps, is slowed down for very small time steps.

4.2. Tra6elling wa6es

4.2.1. Triad interactions on horizontal bottom. One of the simplest examples of triad
interactions occurs when first-order monochromatic velocity boundary conditions are applied
in shallow water. This will generate spurious free higher harmonics, in addition to bound
higher-order waves, which are phase locked to the primary wave. The results will then be a
spatial variation of wave profiles and statistics. A particular example is simulated here, which
has been both experimentally and numerically investigated by Chapalain et al. [18] (Test A)
and numerically by Madsen and Sørensen [19].

A rectangular velocity profile with a sinusoidal time variation (period T=2.5 s) is imposed
during 200 s, generating waves of height H=0.084 m in a channel of depth h=0.4 m and
length Lchannel=60 m. The channel is discretised with 1024×16 and 2048×32 cells, and time
steps of Dt=0.02 and 0.01 s, respectively, are used. While the horizontal discretisation is
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Figure 7. Wave tank with submerged bar on horizontal bottom.

equidistant, Dx=0.06 and 0.03 m respectively, the vertical resolution is refined towards the
free surface (a=10). Elevation profiles are shown in Figure 6(a), while the amplitudes of the
first to fourth harmonics are shown as they vary along the channel in Figure 6(b). Both the
beat length in the interaction between the harmonic components and the amplitudes of the
higher harmonics are seen to be quite invariant with discretisation and to be in good
agreement with the experimental data of Chapalain et al. [18].

4.2.2. Shoaling wa6e o6er submerged bar. The code is used for simulating the propagation of
regular incident waves with period T=2.02 s and height H=0.02 m over a submerged bar on
a horizontal bottom (see Figure 7). This test has been investigated both experimentally [20,21]
and numerically [22–24] by numerous authors. On the upward slope the incoming wave is
shoaling, with non-linearity generating bound higher harmonics, which travel phase-locked to
the primary wave. On the downward slope these harmonics are released as free waves, resulting
in an irregular wave pattern. The numerical reproduction of this pattern has shown to be very
demanding with respect to the accuracy of the computed linear dispersion.

The problem is solved with different equidistant spatial discretisation in the horizontal
direction (Dx:{0.015, 0.03, 0.06} m), stretched vertical discretisation (a=10) and different

Figure 8. Propagation of regular waves with period T=2.02 s and initial height H=0.02 m over a submerged bar (see
Figure 7). Time series of surface elevations at (a) a location on top of the bar, x=13.5 m, and (b) behind the bar,
x=21 m. (�), measured by Luth et al. [21]; (—), computed, Dx=0.015 m, Dt=0.01 s; (-----), computed, Dx=0.03

m, Dt=0.02 s; (– – –), computed, Dx=0.06 m, Dt=0.04 s.
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time steps (Dt={0.01, 0.02, 0.04} s). Waves are generated for 80 s in fluid initially at rest. Both
the computed elevation and its Fourier transform are compared with measured data at selected
locations (see Figures 8 and 9). The shoaling process on the upward slope of the bar is well
described, even with the coarsest discretisation used. However, on the lee side of the bar, the
spatial discretisation needs to be sufficiently fine to resolve the released higher harmonic
waves, which are otherwise damped by numerical dissipation.

4.2.3. Sideband instability of non-linear deep-water wa6es. In their theoretical and experimen-
tal work, Benjamin and Feir [25] showed that weakly non-linear deep-water wave trains are
unstable to modulational perturbations. Modulations by side band wave components gain
energy by quartet interactions as the waves travel and the shape of the initial wave group
evolves into massive wave pulses. Physically, these pulses are damped by wave breaking or
evolve back into a wave group of almost the initial shape, hence the system shows recurrence.
According to the stability analysis of Benjamin and Feir, the waves are most unstable to
pertubational waves with the frequency shift d=9ka, where ka is the steepness of the

Figure 9. Propagation of regular waves with period T=2.02 s and initial height H=0.02 m over a submerged bar (see
Figure 7). (a–d) Amplitudes of first to fourth harmonic, respectively, as a function of x-location along the channel.
(�), measurements by Luth et al. [21]; (—), computed, Dx=0.015 m, Dt=0.01 s; (-----), computed Dx=0.03 m,

Dt=0.02 s; (– – –), computed, Dx=0.06 m, Dt=0.04 s.
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primary wave. However, for steeper waves, the stability analysis of Benjamin and Feir has
been improved by Crawford et al. [26], generally giving lower growth rates at given wave
steepness, and having growth rate maxima at perturbation frequencies of dBka.

Numerical simulations of the Benjamin–Feir instability are quite demanding, as the compu-
tational domain has to cover in the order of O(100) wave periods to allow direct simulation
of the recurrence phenomenon, hence requiring high computational efficiency with the present
computer technology available. Numerical computations with modulated deep-water wave
trains have been performed with potential flow BIEM codes, utilising periodic boundary
conditions [4,27] in order to keep the computational domain small, or subdomain division to
improve efficiency [6]. In the present work, waves are generated at one end of a long channel
with depth h=2p m, with water initially at rest. A primary wave with angular frequency
v=2p/T, T=2.006 s and wave number k=1 m−1 is generated with given steepness ka by
imposing a second-order Stokes velocity profile. Additionally, two sideband waves with
angular frequency (19b)v, generated by imposing first-order Stokes velocity profiles, are
superposed. Throughout the study, the sideband waves have initial amplitudes of ba, b=0.05,
and frequency shift d=ka. The phase shift at t=0 between sideband waves and primary wave
is chosen to be p/4, this being the most unstable case according to Benjamin and Feir.

The simulations are carried out in channels of both 200 and 800 m length, the latter covering
about 130 wavelengths. While the horizontal discretisation is chosen to be equidistant,
vertically cells are again concentrated towards the free surface (a=10).

In Figure 10(a), the growth of the sideband amplitudes for initial wave steepness ka=0.1
and 0.2 respectively, is compared with the theoretical estimates of Crawford et al. [26], showing
good agreement. In all simulations, the growth of the upper sideband (vs= (1+d)v) exceeds
that of the lower. Furthermore, particularly with the coarser discretisations, the energy transfer
from the carrier wave to the sidebands appears to weaken (see Figure 10(b)) and numerical
dissipation is seen to damp the carrier wave.

Figure 10. Sideband instability of deep-water wave with period T=2.006 s in a channel of depth h=2p m. (a)
Relative amplitude of primary wave upper an lower sideband perturbations, respectively, as function of horizontal
position x. (—), ka=d=0.10. Dx=0.1 m, Dt=0.01 s; (-----), ka=d=0.20. Dx=0.1 m, Dt=0.01 s; (bold line), side
band growth according to Crawford et al. [26]. (b) Ratio between computed side band amplitude for ka=0.10 and
estimate of Crawford et al. as function of x. (—), Dx=0.1 m, Dt=0.01 s; (. . .), Dx=0.1 m, Dt=0.02 s; (-----),

Dx=0.2 m, Dt=0.02 s; (– – –), Dx=0.2 m, Dt=0.04 s.
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Figure 11. Propagation of deep-water wave (T=2.006 s, h=2p m and ka=0.10) with superposed side band
perturbations (b=0.05 and d=0.10) Elevation profile along channel of 800 m length at t=700 s. Discretisation by

Dx=0.13 m and Dt=0.02 s.

Figure 11 shows the elevation profile as it is computed at time t=700 s for ka=d=0.10
along the 800 m long channel. Clearly, at about x=400 m, the wave train is disintegrated into
wave pulses, after which the wave evolves back into a near-initial shape about the end of the
channel. The estimated recurrence length of about 800 m is larger than the value of 680 m
according to the theoretical results of Stiassnie and Kroszynski [28]. Furthermore, the waves
approaching the right end of the channel are damped to about 80% of their initial height.

4.3. Wa6e–current interaction

A steady current is introduced in a channel with a submerged bar (see Figure 12). This is
done by adding a steady horizontal component U0 to the imposed velocity boundary condition
on the left side boundary and by relaxing the velocity field towards up=U0, according to
Equation (43), in the wave absorbing region at the right end of the channel. At depth h0=0.4
m, the steady velocity component is chosen to be U0= −0.1 m s−1. Due to the small bottom
slopes, the steady velocity profile may be assumed to be rectangular. Therefore, simple integral
mass and energy balance equations

U(h+hm)=U0h0,
1
2

U2+ghm=
1
2

U0
2, (45)

can be solved to estimate the steady velocity U and the mean elevation hm as functions of the
horizontal position x. This yields a velocity of Utop:−0.5 m s−1 on top of the bar, which
corresponds to a local Froude number of Fr=Utop(g(h+htop))1/2:−0.47.

Waves of height H=0.005 m and with periods T=2 and 1 s respectively, are generated to
propagate against the mean flow direction. In the case of T=2 s, waves are steepened over the
bar with only a minor generation of super-harmonics due to the small amplitude, recovering
almost to their initial shape after the bar (see Figure 13). Amplitudes are seen to agree closely

Figure 12. Wave tank with submerged bar on horizontal bottom for studying wave–current interaction.
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Figure 13. Propagation of waves over a submerged bar with opposing current (see Figure 12). Elevation profiles at
t=95T. Initial wave height, H=0.005 m, and current Uo=0.1 m s−1 at 0.4 m depth. (a) Wave period T=2 s. (b)

Wave period T=1 s. (-----), envelope according to linear wave theory.

with the linear wave theory and the shortened wave length on top of the bar reflects the
Doppler shift experienced by the wave. The results are invariant to refinements in discretisa-
tion beyond Dx=0.06 m and Dt=0.02 s. The rather fine time step is necessary due to a

Figure 14. Fluid domain and velocity vectors around blocking point of waves with period T=1 s and initial height
H=0.005 m propagating against a steady current (see Figure 12). (a) t=95.00T, (b) t=95.25T, (c) t=95.50T, (d)

t=95.75T.
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Figure 15. Wave with period T=1 s and initial height H=0.001 m propagating against a steady current (see Figure
12). (a) Elevation profile at t=95T. (b) Elevation profiles at ten phases within a period between t=95T and t=96T.

CFL-number type stability criterion, becoming more restrictive with the introduction of the
steady current.

In the case of T=1 s, waves are blocked on the upward slope because the current velocity
exceeds the group velocity of the wave. The blocking point agrees precisely with the location
estimated by linear wave theory. In order to resolve the blocking process more closely, the time
step is decreased to Dt=0.005 s, and in a 2049×33 grid the horizontal discretisation is locally
refined to about Dx:0.01 m near the blocking point. Waves with initial heights of both
H=0.001 and 0.005 m are generated. In Figure 15, the elevation profile shows the incoming
wave to be superposed by very short reflected waves, with the wavelength decreasing to :0.1
m, as the reflected waves are shortened towards the left and are dissipated rather quickly by
numerical damping. In the case of the initial wave height being h=0.005 m, waves of rather
large steepness are generated close to the blocking point, and the direction of the local fluid
velocity is seen to be reversed in the neighbourhood of the wave crests (see Figure 14).

Figure 16. Estimate of wave number of waves being reflected by an opposing current, as a function of the location
x. (a) initial wave height H=0.001 m; (b) initial wave height H=0.005 m. (�), estimate based on surface elevation;

(�), estimate based on vertical surface velocity; (—), theoretical value based on Equations (46) and (47).
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Assuming the wave train to be fully developed, all variables appear to be periodic with
period T, seen from a frame of reference being at rest (see also Figure 15). The expression for
the constant apparent frequency

s=v+kU, s=2p/T, (46)

can be solved together with the linear dispersion relation

v2=gk tanh(k(h+hm)), (47)

having two solutions for k, the smaller ki being the wave number of the Doppler shifted
incident wave, and the greater kr being the wave number of the reflected wave, if blocking
occurs (see e.g. Reference [29]).

By identifying the wave crests in either the elevation profile, h(x) or the vertical component
of the fluid velocity uy(x), the wave number of the reflected wave is estimated as function of
x for ten phases within the time interval between t=95T and 96T (see Figure 16). The
estimated wave number values are seen to be scattered, but found on average to follow the
theoretical estimate quite closely. The scattering increases with increasing initial wave height
and it is explained by the Doppler shift which the short reflected waves experience due to the
velocity field associated to the longer incident waves.

5. DISCUSSION

5.1. Accuracy

Error estimates are typically difficult to make for finite volume flow codes due to the many
discretisation parameters involved and the non-linearity of the governing equations. Formally,
the governing equations are discretised in space to first-order only, the first-order truncation
error being due to stretching and skewness of the grid. However, since grids were neither very
stretched nor skew in the standing wave test case, convergence rates of second-order are found
when varying grid resolution within reasonable limits. In all of the following examples focusing
on travelling waves, the horizontal resolution is considered to be of most concern, while the
vertical discretisation is chosen to give finer resolution, particularly in connection with
deep-water waves.

Both the kinematic boundary condition, Equation (6), and the momentum equation (34), are
discretised to second-order in time. Although this second-order convergence rate is seen in the
standing wave test for finite time steps, the convergence rate appears to degrade with
refinement beyond a certain level. This behaviour is due to the cell-centred variable layout,
which requires interpolation of cell-centre values when evaluating fluxes. Hence, in the
correction step (37), the predicted velocity u* is corrected by 9f, where f is the solution to
Equation (36),

D(G(f) ·n)n+1:−D(f*):−D(I((un+DtR) ·nn+1))

:−D
�

I
�

u*n+
D(I(fn)nn)
6n

�
·nn+1�−DtD(I(R) ·nn+1)

:D
��

G(fn)−I
�D(I(fn)nn)

6n

��
·nn�−DtD(I(R) ·nn+1), (48)

and R denotes the discretised RHS of the momentum equation. Since
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D
��

G(fn)−I
�D(I(fn)nn)

6n

��
·nn�=O(Dt0)O(Dx2)O(Dy2), (49)

the projection step gives rise to an error, which is decreasing to second-order with the spatial
discretisation, but is independent of the temporal discretisation, formally ruining temporal
convergence. The error is found to add dissipation to the simulations, fortunately however, it
seems to be small compared with other error sources when using time step sizes relevant in
practice.

When varying time and space discretisation, numerical stability in the time integration
procedure showed to follow a CFL-number type criterion, since both the convective terms and
the kinematic boundary condition are treated explicitly. However, no formal stability analysis
have been carried out due to the considerable general complexity of the algorithm.

The presented results demonstrate that wave properties and interaction processes are
modelled well in both shallow and deep water. In particular, as it is the basis requirement in
all the above tests, linear dispersion of gravity waves is described quite well by the method. For
numerical resolutions in time and space of L/Dx\=50 and T/Dt\=50 respectively, the
dispersion relation seems to be fulfilled to an accuracy better than 1%. Even amplitude
dispersion can be described, as seen in the standing wave test, where non-linearity increases the
wave period by 0.2% relative to linear dispersion, although the required accuracy needs a
rather fine discretisation.

Since the fully non-linear problem is solved without any assumptions on wave steepness, all
kinds of non-linear wave interaction are—at least in theory—included. Triad interactions are
successfully simulated both for constant depth and varying depth, and the simulation of the
process does not seem to be very sensitive to discretisation. Also, the Benjamin–Feir sideband
instability of deep-water waves, being based on quartet wave interactions, is modelled quite
well. In general, quartet interactions are significantly weaker than triad interactions and
therefore develop more slowly and over longer distances. This makes it a more difficult case
to model, as small errors in dispersion may accumulate to significant errors in the wave phase,
which again will influence the recurrence length in the phenomenon. Note that the computed
recurrence length is significantly longer than the theoretical one.

In the present method, steady or unsteady currents can be introduced directly by specifying
proper inflow and outflow boundary conditions, and the description of wave–current interac-
tion is straightforward. In this connection, the successful simulation of wave blocking is
believed to be a clear demonstration of the special capabilities of the present code.

5.2. Numerical damping

In contrast to potential flow methods, no energy equation is solved, therefore, the energy
balance must emerge from the mass and momentum transport equations. Hence, the main
problem for the present method, as for other Euler or Navier–Stokes codes, are errors in the
energy conservation. With the above mentioned resolution of L/Dx:50 and T/Dt:50, about
0.5% of the energy of the standing wave is dissipated during each period. With L/Dx:50 and
T/Dt:100, that value is decreased to about 0.1%. The modulated deep-water wave, shown in
Figure 11, also discretised by L/Dx:50 and T/Dt:100, looses about 0.3% of its energy for
every wavelength that the wave is propagating. In this connection, it is important to
distinguish between errors in the energy transfer between potential energy and kinetic energy,
as it takes place in gravity waves and general numerical dissipation, respectively. The former
is mainly determined by the implementation of the pressure boundary condition at the free
surface and the choice of time-integration technique employed for the kinematic free-surface
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condition, and might cause either energy loss or energy gain. The proper treatment of the
energy transfer relies heavily on mass conservation, because loss of mass also implies loss of
potential energy. Numerical dissipation, on the other hand, is determined by the well-known
truncation-error terms in the evaluation of flux terms, particularly the convective terms.
Furthermore, the discretisation of the kinematic boundary condition may introduce numerical
damping. In particular, numerical damping is associated with the first-order extrapolation
procedure of the velocity at free-surface cell faces, Equation (23). This procedure adds
dissipation to the system, especially when simulating deep-water waves where the velocity
obviously has a non-zero normal gradient at the free surface. However, it has been shown that
simple higher-order extrapolation is not numerically stable.

The numerical damping characteristics of the method are not as good as in potential flow
methods using equivalent resolution in time and space. However, compared with other
free-surface Euler or Navier–Stokes codes, the present code seems to be an improvement in
that respect.

5.3. Efficiency

All computations were carried out on a IBM RS/6000 3CT workstation with 128 Mb
memory and a 67 MHz Power 2 processor. With this type of computational resource, the
method allows accurate simulations of wave trains within O(50) wavelengths over O(100) wave
periods.

The memory requirements of the method are not significantly different from common
cell-centered finite volume codes on curvilinear grids. While the grid-generation itself at every
time step does not cost significant CPU work, as long as algebraic grid generation techniques
are employed, two main sources of added CPU work are introduced. First, due to the
time-varying grid, recalculation of all geometric coefficients is needed at every time step, where
many coefficients could otherwise have been computed once and then stored. Secondly, the
introduction of the Poisson equation for the dynamic pressure adds to the computational
work, compared with common fractional step methods. Due to the multigrid method em-
ployed in the solution of the Poisson equations, the total CPU work per time step increases
with problem size as O(NM), N and M being the number of cells in the horizontal and the
vertical direction respectively, but it is heavily dependent on the cell aspect ratio and grid
stretching. Being a rough estimate, 100 ms CPU-time is spent by the IBM RS6000 3CT
workstation for every cell and time step. These numbers compete well with classical BIEM
methods employing direct solution techniques to solve the resulting dense equation systems, at
least for large problems because LU-factorisation is an O(N3) process, N being the number of
panels. This comparison will be of a greater advantage to the present method when going to
three dimensions. However, iterative solution techniques, being accelerated by multipole
expansion techniques, have greatly improved the efficiency of BIEM-methods recently. Fur-
thermore, due to much less numerical damping and the use of higher-order discretisation
techniques, space discretisation can be chosen to be coarser than in the present method.
Consequently, for wave problems satisfying the assumption of irrotational flow, properly
implemented BIEM methods will eventually be most efficient.

Therefore, the objective of the present method is not to compete with potential flow methods
for the solution of pure wave problems. The method should be considered as a first step
towards a more complete model incorporating the effects of viscous oscillatory flow in
combination with free-surface dynamics. Wave–current interaction will be studied in the
future, particularly rotational currents. Furthermore, our studies will include both laminar and
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especially turbulent bottom boundary layers driven by wave motion. Finally, we believe that
the present method is a good basis on which models describing the effect of wave breaking,
wave driven currents, turbulence, etc. can be developed.
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